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English Letters

a

C1

(9]

CWA

o1

p(e)

NOMENCLATURE

Undeformed radius of the cylindrical shell, a structural
radius measured to the midline of the shell thickness

Undeformed geometric radius of the cylindrical shell,
measured to the outside surface of the shell.

Width of cylindrical shell. This would normally correspond
approximately to the tread width of a tire.

Viscous damping coefficient

Propagation velocity ~fﬁ7£‘

Dimensionless viscous damping coefficient
Dimensionless damping factor

E.h (for a narrow shell or ring)

Young's modulus of shell material

Shell thickness

Shell deflection against a plane

Elastic stiffness of shell internal foundation
Dimensicnless elastic stiffness kaZ/Eh.
Eh8/12 (for a narrow shell or ring)
Dimensionless spring rate

Shell stress resultants

Pressure

Internal pressure

External pressure
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PA

PE

PO

Pe

Greek letters

2
a

©1

NOMENCIATURE (Concluded)

Dimensionless internal pressure
Dimensionless external pressure
Dimensionless internal pressure
Dimensionless external pressure
Shear force, lbs

Time

Shell displacements
Dimensionless angular velocity

Dimensionless shell deflection w/a.

h2/12a2, a dimensionless constant
Poisson's ratio

Material density in shell

Shell angular velocity

Strain

Dimensionless shell angular velocity
Dimensionless time

Polar angle

0 -Qt, a moving co-ordinate
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I. ABSTRACT
;23 &é?

An elastically supported cylindrical shell is used as a model for the
dynamic rolling of a loaded pneumatic tire. Such a model includes many of
the effects found in the real tire, such as bending of the tread in the con-
tact patch region, elastic support coming from the inflated sidewalls and
loss effects coming from the inherent dissipative properties of the materials
used.

Methods are presented for calculating the dynamic contact patch areas of
such a model, and it i1s shown that these are influenced considerably by roll-
ing velocity, the constructional parameters of the tire and its loss character-
istics. Dynamic pressure distributions inside these contact patch areas may
also be obtained analytically, and techniques are given for doing this.

As an example of the use of such a model, an elastically supported cylin-
drical shell with a viscous loss law is used as a basis for the calculation of
the load carrying and drag properties of a pneumatic tire, to the extent that
the wvarious tire parameters may be approximated. These results are presented

as typical of the information which may be obtained from such a model.

o



IT. INTRODUCTION

It is a reasonably good approximation to state that most pneumatic tire
problems can be separated into two groups, these being:

(a) Those involving motion in the plane of the wheel or rim;

(b) Those involving motion transverse to the plane of the wheel or

rim.
There are, of course, occasional exceptions to this compartmentalization, but
in the main it is felt that considerable knowledge could be gained by develop-
ing methods for separately studying pneumatic tire performance either in the
plane of the wheel or transverse to the plane of the wheel.

Preliminary efforts have been made by such writers as Saitol and Thorsen2
in developing techniques for predicting cornering forces and other effects
transverse to the plane of the wheel. To the begt of the writer's knowledge,
no systematic attempts have been made to study motion in the plane of the
wheel prior to Ref. 3. In that report, the use of an elastically supported
cylindrical shell was proposed as a means for studying the static loading of a
pneumatic tire against an infinitely rigid, frictionless plane. The results ob-
tained from that analysis seemed to agree fairly well with contact patch length
measurements made on real pneumatic tires.

In view of the many current problems associated with pneumatic tire mo-
tion in the plane of the wheel, it was felt desirable to attempt to extend
these analytical techniques to those dynamic cases which can be profitably

studied.
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ITI. THE BASIC DYNAMIC MODEL FOR A ROLLING TIRE

We consider first a generalized cylindrical shell under arbitrary loads.

This is shown in Figure 1, taken from Fligge.

Figure 1. ©Shell stress resultant conventions and nomenclature.

From Figure 1, force equilibrium equations may be written for the element of
cylindrical shell surface. Generally,these equations are directed in the x,

and r directions, and are given as:

X
N * . * 2
@ Ng * @ N - Mg =M+ Pga® =0 (1)
M ﬁ' + ﬁ' 4'** +aN, - P a2 =9
) X6 6x X ) r

(2)



It is next necessary to consider displacements of a cylindrical shell,

where we let

u = displacement along the generator, positive in the direction of in-
creasing x;

v = displacement along a circle of radius a, positive in direction of
increasing 9;

w = radial displacement, positive outward.

Using this notation, and assuming that: (1) all points lying on one normal
to the middle surface before deformation do the same after deformation; (2) that
for all kinematic relations the distance z of a point from the middle surface
may be considered as unaffected by the deformations of the shell; (3) that the
stress o may be considered negligible compared with the stresses Oy and og*

By use of such assumptions, and by consideration of the definitions of
shell forces, one may finally express the various shell forces and moments in

terms of the deformation by means of the equations

Ne -2(v'+w+uu)+-53-(w+w")
D .* \ * &
N =g @@+u' +uvw) - 5w
D, 1 ' o K. 1-u ' ot
Nex -y (u' + v) + P i (u' + w")
— (3)
_D \ K 1-u * *
Neo =3 TrE @ eV gm0 W
K " *k
Me=§-z-(w+w + uw

* %

M = J; (w + uw" - u - uv')

X
K u' v
Mox = 37 (1 - U)(W' t5 - 3)
K * *
Mg =3z (1 = w)(W' - V)

' :
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If one uses Egs. (3) and substitutes them into Egs. (1), it is possible
to obtain the three equations of equilibrium in terms of the three differen-
tial equations in displacements u, v and w of the middle surface of the shell.

These equations become

;**‘ _]%l_uu . 1;” ;' + U‘: + aZ[l_;'E_ u" _’:’*4. };_LI :"] + T’Xaz -
D
(-1—;3— ar e v s -lg—u:;+ w' o+ az[-;- (l-u):l*- 3%::'] + p_e_az =
D.
u:l + V' + W az[._;__ ;" _*;*_ 3—51‘:7' +T:*+ 2*‘:;1 + W
£ 2 W e W] -Pia2=o
D

(1)

We next wish to consider the specific case of a rather narrow cylindrical
shell which has no variation of loading with respect to the x direction. In
this case, the shell takes on the form shown in Figure 2, where a shell of
width b, and thickness h is made of material of modulus E and density p, the

radius of the cylinder being a.

P — byt

Figure 2. Narrow cylindrical shell notation.



If the loading i1s uniform with respect to the x direction, and if the
width b, is small enough so that contraction in the x direction may be neg-
lected, then one may visualize that all derivatives with respect to x in Egs.
(h) will vanish. In addition, all displacements u in the x direction become
negligible and will be dropped, as will pressure components in the x direc-
tion. Allowing these simplifying assumptions to be used in Egs. (L) causes

them to reduce to

d v

ﬁ(a—g"w)"P

v a‘#w 2 a (5)
—= 2 . =
(39+W)+°‘[3en"2362+“’]-5-0

There are several ways that one may proceed to analyze Egs. (5). Perhaps the
simplest of these is to visualize that for a frictionless plane p, vanishes so

that the first of Egs. (5) simply states that

(g—‘é + w) = Cons't (6)

This same term occurs in the second of Egs. (5). It is immediately recog-
nized as being connected to the circumferential membrane strain through the well

known relation

1
“o, 2 '3 (6a)

It is simplest to carry this term along in the equations for some time

before assigning it a specific value. Hence, Egs. (5) may now be written
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2
a
ag, + az(va + 2w+ W) = Pr

6. En

(1)

This equation now represents the equation for deflection of a cylindrical

shell against a frictionless load, so that only radial pressures exist. Note
2

that the constant @ 1s given by

2
(12- h

12a2

In Eg. (7), it is desirable to include most of the properties of a real
pneumatic tire by means of adjusting the radial pressure term P, for various
tire effects. OSpecifically, it is desired to support the elastic shell by
means of some kind of generalized impedance in such a way that both real
elastic moduli and imaginary elastic moduli can be operative. This might be
thought of, in some respects, as filling the inside of the shell with a mass-
less foam-like material. For purposes of this report, the generalized im-
pedance will be reduced to the specific case of a real elastic and viscous
loss support system, but it is readily understood that the viscous loss sup-
port mechanism may be replaced by other mechanisms such as a hysteresis type
of loss. For the present, the viscous loss mechanism represents a very simple
device which is easily treated analytically, and for that reason will be re-
tained here.

As an additional feature of Eq. (7), it is desirable to include both a
uniform internal inflation pressure and an external pressure loading term de-

noting contact pressures coming from contact with the ground surface.



Finally, inertia terms form part of the radial loading since it may be
anticipated that the shell in question will be accelerating in the w direc-
tion as well as being subjected to an overall rigid body rotation of angular
velocity Q. Accounting for all of these factors, one may write the total

radial pressure of the shell in the fomrm

“oh[w - (a + w)a?] (¢) p, = o
~kw (d) P, =

(e) P, = -p(O) (8)

() p,

() p,

I
g
o

assuming that tangential velocities are negligible and where

mo (9)

In this eguation, the presence of the Q2 term is due to the fact that the
shell is assumed to be rotating with angular velocity Q. We will next allow
loads to move in the opposite direction to @ around the periphery of the ro-
tating shell by means of transforming the shell equations into a new indepen-

dent variable

61 =06 - Qt
3() _3() _ 430
It It ) 61
32( ) (lO)

71z = () - 220) + 2()"

10
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Using these, one obtains

2 . " 2c ..
acg + 2 (a2w" - 200t + W) + 2= G0 - aw) (12)
m c12 Eh
2 2,2
s a2tV 4+ 202w 4 wla2 + ka? %8
Eh c,?
a? 2
=g [ - p(8) + p  + phag?]
where
cl2 = E/p .
Next, introduce the new variables (see Ref. 5)
w_ _ . tcy _ e .2 _E
AT e Ty a T (12)

from which the equation of motion of the shell may now be written in the form

e . ac; s+ 2aQ . IV
Eem"'z*'—Eh—-z-—cl—z'+azz
202 2
2 , a°q accq
+ (2a +‘le-)2"-—h—-E z! (13)
2 242
2 , ka 2€a _a
* % ER - TER02 7 R [ p(8) + p + pha?]
Introducing the variable
Qa _ =
g ¢ (1k)

one finally obtains Eq. (13) in the form

L ace hd — 1V
€g * 2% Ehl z - 202" + a2z + (202 + Q)"

- 2
- ag}il Qz' + (aZ + %al__ - 5’2)2 (15)
=5 [- p(8) + p_ + phag?
ER ! n, * pha ] .

11



In Eq. (15), we define the new constants as follows:

acic _ - an(e) _
B ¢ TERoC TR
16)
apg _ (
ER - 'O
and dividing by az, one finally obtains the equation of motion
€q .
m oz c ., 202, IV Q2 c0
a2+F+ETz"—Tz'+z +(2.+07[)z"--7—:‘:l z!
S (17)
Q _ PE Q2  po
+(1.+a7--;2-)2—-:§-+(—;2-+:;§-
where
T - ka?
> Eh °

Equation (17) is an equation for motion of the cylindrical shell and con-
tains all terms necessary for representing most of the phenomena which can be
observed in a rolling pneumatic tire. Ioss terms are represented through the
viscous loss constant ¢, dynamic terms throught the gquantity T and elastic
terms through the quantity K. The angular velocity of the wheel is given by
the dimensionless angular velocity Q so that Eq. (17) in effect represents a
circular cylindrical shell, supported as indicated in Figure 3, with a moving
load of angular velocity . In addition to this angular velocity , one may
superimpose a rigid body rotation of angular velocity Q in the opposite direc-
tion, as was done with the inertia term of the form (a + w)QZ in Eq. (8). This
term, whose effect is to superimpose the rigid body rotation of angular velocity
Q on the entire system, results in Eg. (17) now representing rotating tire

with stationary impressed load, such as is shown in Figure 3.

12
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Figure 3., BShell characteristics.
We now consider steady state solutions to Eq. (17). Under this condition,

gll time derivatives vanish and making substitutions of constants in the form

= -
= wAy S2 = cuas 12'7: KA
a a s 3
(18)
PE PO
— = P9 ~— = PA
a? a?
one sees that this reduces to
€
em v
—z +z + (2 + WA)Zz" - (CWA)z' + (1 + KA - WA)z
a
(19)
= PA - P8 + WA

where, of course, the primes represent derivatives with respect to the variable
O1, and in general Eq. (19) represents steady state, or standing wave, solutions
to the deformation of the rotating cylindrical shell.

2
It is now necesgary to define the constant €g /a « This will be done by
m

making the following basic assumptions:

13



(a) The process of inflation will be considered as one involving mem-
brane effects only.

(b) The process of deforming the tire in the contact patch will be con-
sidered as one involving bending effects only.

Based on these ideas, we may let

a
€ p

—5 = ;%f [EE—J (20)

which implicitly defines the dimensionless displacement z as being measured

from the inflated position. Using this, Eq. (19) may be written in the form

-IV - - -
Z  + (2 + WA)Z" - (CWA)Z' + (1 + KA - WA)Z - WA = - Pe (e1)

where z is used to emphasize that this displacement is measured from the in-
flated tire as a reference. From this equation, one sees that the static
problem may be obtained readily by allowing the values of WA and CWA both to

vanish simultaneously. This causes Eq. (21) to reduce immediately to

ZV 4 220+ (1 + KA)Z = - Po (22)

which was used in Ref. 3.

1h
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IV, THE CONTACT PATCH REGION

There are two problems associated with attempting to define the region
or length of contact of the tire model pressed against a frictionless plane.
The first of these is the determination in some form or another of some of the
elastic constants which fit into the various equations of motion just developed,
particularly Eq. (21), which is the primary statement of deformation from the
inflated state.

One method of accomplishing this is to observe that the static case of
Eg. (21), given in this report as Eq. (22), indicates that the static problem
of contact is a relatively simple one involving only a single elastic constant,
the dimensionless foundation modulus denoted here by the symbol KA. It should
be poggible to determine the value of KA by appropriate tests on various real
tires, in which certain deflections are imposed and the resulting contact patch
lengths are measured. Experiments indicate that this may indeed by done.

Similar techniques have not yet been developed for the direct measurement
of other elastic constants appearing in Eq. (21). For purposes of this report,
tire construction may be used as a guide in calculating some of the constants
sppearing in this equation, and in this regard we are rather fortunate in hav-
ing available a background in the material properties of cord rubber laminates.
By the use of such information one could generally hope to obtain the remaining
constants necessary in Eq. (21).

In connection with Eq. (21), one must next decide on techniques for treat-

ing the deformation of the cylindrical shell model against a frictionless plane.

15



In doing this, it is seen that the left side of the equation contains terms
involving deflections while the right side contains only the external pres-
sure loading term. If one could know the deflections of the shell model in-

gside the contact patch region, then it might be possible to specify the values

7z on the left side of Eq. (21) and to calculate the particular values of © for
which the external pressure vanished, by means of the right side vanishing in
Eq. (21). This may be accomplished by reference to Figure 4 from which one may

deduce by geometry that

NZ2\74 N — 7

Figure 4. Geometry of intersection of elastic shell with a rigid plane surface.

.. a coseo
| ) coso ) (23)
where
z =X,
8o

16
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The first, second and fourth derivatives of this function are needed, and

these work out to be

coso i
o sinf

z' = ( )
coso cos@ (2k)
cosf
;n - 5 o 1 + Sin20
( ) (25)
cos9 cos?9 >
_Jy  cosé

0 [5 + 18 sin26 + sin“e

]

cos@ cos™9
Having these derivatives, it may be seen at once that given the proper elastic
constants all terms of Eq. (21) may be evaluated by using Eqs. (23) - (26),
which physically mean that the outer surface of the shell is in contact with
the flat plane of Figure 4. We then search for the pressures PO in Eq. (21)
which cause this situation to occur. Inside the region of the contact patch
such pressures will be positive, while outside the contact patch region such
pressures will be negative. Thus, we search for solutions to Eg. (21) in
which the right hand side is zero. BSuch solutions must be functions of the
angle O, and such solutions thus give angles O which define the ends of the
contact patch,.

Note that all functions on the left side of Eq. (21) are even except for
the first derivative function which occurs in connection with the damping term.
If the damping is nonzero, then it may be seen that the forward and aft angular
locations of the contact patch will not be egqual to one another, and in general
this has been observed to be a fact. Use of Eq. (21) thus gives dynamic infor-
mation concerning the contact patch in a rolling tire under the assumptions of

complete contact with the flat plane.
L7



In a later section of this paper a specific example of the calculation
of contact patch length under dynamic conditions will be presented. For the
moment, the theory is complete and need only be worked out for the proper

numerical cases.

18
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V. CAICULATIONS AND EXAMPLES

There are at least two methods for attempting to verify some of the
theoretical ideas brought out by the use of a model such as proposed in this
report. Perhaps the best and most direct of these would be to manufacture a
model of the type visualized here and to actually conduct tests involving its
rolling over some essentially frictionless plane, in such a way that pressure
distributions, total vertical loads and drag forces could be measured accurately.
If the properties of the model were well known, then the predictions of the
theory could be compared with measured data. However, such a series of ex-
periments becomes rather difficult when they must be done on a flat plane as
visualized here, since the equipment for rolling a wheel on such a flat sur-
face is expensive and complicated. For that reason a different approach will
be used here, where one attempts to utilize physical data which closely approxi-
mates that of a real tire, and attempts to predict some of the known operating
characteristics of such a tire. In some respects this is less satisfactory
than the first process, since it is known that many of the important operating
characteristics of a tire depend heavily on the form of its internal loss.
These internal loss characteristics are not necessarily well defined for rub-
ber-cord combinations. It is clear that a simple viscous loss law does not
represent such loss characteristics wvery well, but its form is quite simple
and will serve to illustrate the method of calculation. For this reason it
gshould be pointed out clearly that the purpose of this example is not to model

a specific tire exactly, but rather to introduce a technique which, given the

19



proper loss characteristics; can be used to perform such modeling. Hence,
the resulting calculations are only indications of the general nature of tire
behavior under such conditions. The fact that some of the important charac-
teristics seem to agree with actual tire characteristics gives hope that the
theoretical framework outlined here will have some utility as a tool in pre-
dicting the response of a real pneumatic tire.

One must first turn to the constants needed in evaluating Eq. (21).
Basically, these constants are exactly those which one must use to Aefine the
overall characteristics of a circular cylindrical shell of the type proposed
here. An attempt has been made to chose such characteristics to be compatible

with a 7.50 x 14.00 automotive tire, and the resulting numerical values are

being used for subsequent calculations.

b, = L.25 in. E = 10,000. psi
a = 12.35 in. h = 1.14 in. (27)
a, = 13.35 in. p = 1x10 Ib-sec?/in.*

Using this particular value of the outside radius of the wheel ay, namely
13.35 in., one finds that the angular velocity is related to the linear speed
in miles per hour by the relation
Q¢ = 1.32 rad/sec/mph. (28)

Consider next the problem of calculating the response of a pneumatic fire
having the properties given in Egs. (27) under conditions of given velocity
and load. For this purpose, one must first specify the loss law to be used.
The viscous loss type of law previously discussed will be utilized here, and

the damping factor ¢ will be chosen as

20
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c = 0.10 (29)
This is based on interpretation of oscillograph records from free vibratioﬁ
tests of a pneumatic subjected to an impulsive blow.

A digital computer program has been constructed which first calculates
the forward and aft edges of the contact patch at a fixed value of damping
constant, and for various values of the other parameters listed in Egs. (27)
and (28). This is done by specifying the tire deflection, which is effectively
accomplished by fixing the angle OO of Eq. (23) or of Figure 4. Once the limits
of the contact patch are known, one may utilize Eqs. (21) and (23) - (26) to
calculate the pressure distribution in the contact patch. Given the pressure
distribution, the total load and the drag force may be obtained by integration.
For this example, the vertical tire deflection will be allowed to vary from 0.5
to 2.0 inches. The linear velocity will be allowed to range from O to 120
miles per hour and the inflation pressure will take on four values, 0, 15, 2k
and L0 psi.

In these calculations, it is necessary to have some value for the dimen-
sionless foundation modulus E7a2 = KA. It was previously pointed out that this
quantity can be obtained directly from a static test in which the length of the
length of the contact patch is measured, and for the particular tire in ques-
tion a value of KA = 325 was obtained.

The results of these calculations are first given in Figure 5. Here,
the forward and aft boundaries of a typical contact patch are plotted as a

function of rolling wvelocity.

2l
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One might note from Figure 5 that, generally speaking, the tire exhibits’
a forward shift of the contact patch with speed, in that the forward and aft
edges both move forward with velocity. This causes the entire pressure dis-
tribution to move forward and results in a shift of the center of pressure for-
ward of the gxle point so as to cause a drag force. This again seems to gen-
erally agree with experience.

In Figure 6 are shown curves of the influence of rolling velocity on ver-
tical load carried at constant tire deflection. These curves are plotted for
two different values of inflation pressures. Generally, the influence of speed
is to increase lcad at fixed deflection. Conversely, at fixed load one would
expect deflection to decrease with speed. Hence, rolling radius would increase
with speed as has been observed.

In Figure T, the drag force is plotted as a function of tire deflection
for four different wvalues of internal pressure, all data being calculated at
a constant forward speed of 40 mph. These curves are almost entirely depen-
dent upon the detailed form of the loss law which is assumed for this par-
ticular model, a viscous law with losses assigned only to the foundation.
Neverthéless, the calculations do illustrate the general form of the results
which are obtained, and show that even for this crude loss mechanism the drag
force increases both with deflection and with inflation pressure, as it should.
One advantage to plotting data in this fashion is that such constant speed
plots eliminate some, but not all of the difficulties of the problem of cor-
recting the loss law for temperature increases, and hence loss increases, as

gpeed ig increased. By restricting attention to a constant speed one does not

25
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Figure 6. Vertical load as a function of speed.

ok




*posds Jo uopjouny B 88 30I0F FwvIg °*L o Vi
S3HONI ‘NOILO37143a

02 gl 9 'l 21 o'l 80 90 20 20 0
_ | _ I | _ _ | | 0
— Ol
oz
Q
2
D>
D un\
N
Q
P
O
m
—ov
w
—log
paads ydw Op
MD| SSO| SNOJSIA
"xouddp 3zis H| X 0G:L
SIUNSSIMd SNOIYVA HOA —9°
NOILO3 1430 'SA 30404 ovyd 3dIL
oL

) »



see these temperature effects quite so clearly. It should also be noted that
Figure 7 does not contain any loss from scrubbing in the contact patch, al-
though this may be a small factor in the over-all picture. Figure 7 is in-
tended as a general presentation of the type of information which can be ob-
tained by calculation from this model, and should not be interpreted as repre-

senting the characteristics of the general model.

In Figure 8, the maximum contact pressures in the contact patch are plotted

as a function of rolling velocity for the same two internal pressures as pre-
viously treated. The results shown in Figure 8 seem to indicate that at the
usual inflation of 24 psi, contact pressures would normally not exceed 40 psi
under ordinary driving conditions.

Figure 9 shows plots of the contact pressure distribution in the contact

patch at two different speeds, O and 100 miles per hour for a single inflation

pressure. The static pressure distribution is symmetric and almost rectangular.

On the other hand, the dynamic pressure distribution evaluated at 100 miles per
hour shows rather large differences between the peak pressure near the center
of the contact patch and the inflation pressure. In addition, the entire pres-
sure distribution has shifted forward. This causes a forward movement of the
center of pressure which results in drag forces.

So far all of the results presented have been speculative in the sense
that good experimental data have not been available as a check. However,
there is one static quantity which can be easily measured, and that is the
load deflection curve. The particular tire which was being modeled here was

inflated to various pressures and loaded to obtain such curves. These results
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Figure 8. Maximum contact pressure as a function of speed.
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are compared with calculation in Figure 10, where it is seen that predictions
tend to be a little more accurate at lower deflections than at higher, which
might be expected from such a linearized theory.

In general it might be said that by use of the equations discussed in
this paper it is possible to calculate many of the important quantities deal-
ing with the rolling of a pneumatic tire in a straight line under constant
velocity conditions. One very important characteristic in such calculations
is the form of the loss law, since this determines almost completely the
general form of the drag forces which are generated and also dictates to some
extent the nature of the contact patch shift as velocity increases. Therefore,
it should be emphasized that users of this type of mathematical model will
probably find it necessary to generate their own individual loss laws and to
insert them into the appropriate equations of this report. Only by this
process will it be possible to obtain realistic tire performance data from a

mathematical model such as this.
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